

jtypes.javabridge: running and interacting with the JVM from Python

The jtypes.javabridge Python package makes it easy to start a Java virtual machine
(JVM) from Python and interact with it. Python code can interact with the JVM using a
low-level API or a more convenient high-level API.

PyPI record [https://pypi.python.org/pypi/jtypes.javabridge].

jtypes.javabridge is an almost fully compliant implementation of Lee Kamentsky’s and
Vebjorn Ljosa’s good known Javabridge package.

Original javabridge was developed for CellProfiler [http://cellprofiler.org/],
where it is used together with python-bioformats [http://github.com/CellProfiler/python-bioformats/] to interface to various Java code, including Bio-Formats [http://loci.wisc.edu/software/bio-formats] and ImageJ [http://developer.imagej.net/].

Original documentation [http://pythonhosted.org/javabridge/]

Contents:

	README
	jtypes.javabridge

	Overview

	Requirements

	Installation

	Development

	License

	Authors

	Installation and testing
	Install using pip

	Install without pip

	Dependencies

	Running the unit tests

	Hello world

	Starting and killing the JVM
	API

	Without GUI (headless mode)

	With GUI on the Java side

	With GUI on both the Java side and the Python side

	Executing JavaScript on the JVM

	High-level API
	Signatures

	Wrapping Java objects using reflection

	Operations on Java objects

	Hand-coding Python objects that wrap Java objects

	Useful collection wrappers

	Reflection

	Executing in the correct thread

	Exceptions

	The low-level API

	Calling Python from Java
	Maintaing references to Python values

	Unit testing

	For jtypes.javabridge developers
	Build from git repository

	Make source distribution and publish

	Upload source distribution built by Jenkins

	Changelog
	1.0.18b3 (2018-11-08)

	1.0.18b1 (2018-10-01)

	1.0.17b2 (2018-05-29)

	1.0.14b4 (2018-02-26)

	1.0.14b3 (2018-01-29)

	1.0.14b2 (2017-01-01)

	0.1.1a1 (2014-10-05)

Indices and tables

	Index

	Search Page

README

Currently only as placeholder (because a base package jtypes.jvm is still in development)

jtypes.javabridge

Python wrapper for the Java Native Interface.

Overview

jtypes.javabridge is a bridge between Python and Java, allowing these to intercommunicate.

It is an effort to allow python programs full access to Java class libraries.

PyPI record [https://pypi.python.org/pypi/jtypes.javabridge].

jtypes.javabridge is a lightweight Python package, based on the ctypes or cffi library.

It is an almost fully compliant implementation of Lee Kamentsky’s and Vebjorn Ljosa’s
Javabridge package by reimplementing whole its functionality in a clean Python instead of
Cython and C.

About javabridge:

Borrowed from the original website [http://pythonhosted.org/javabridge]:

The javabridge Python package makes it easy to start a Java virtual
machine (JVM) from Python and interact with it. Python code can interact
with the JVM using a low-level API or a more convenient high-level API.

Requirements

	Java Runtime (JRE) or Java Development Kit (JDK), and NumPy (not mandatory but highly
recommended).

Installation

Prerequisites:

	Python 2.7 or higher or 3.4 or higher

	http://www.python.org/

	2.7 and 3.6 are primary test environments.

	pip and setuptools

	http://pypi.python.org/pypi/pip

	http://pypi.python.org/pypi/setuptools

To install run:

python -m pip install --upgrade jtypes.javabridge

To ensure everything is running correctly you can run the tests using:

python -m jt.javabridge.tests

Development

Visit development page [https://github.com/karpierz/jtypes.javabridge]

Installation from sources:

Clone the sources [https://github.com/karpierz/jtypes.javabridge] and run:

python -m pip install ./jtypes.javabridge

or on development mode:

python -m pip install --editable ./jtypes.javabridge

Prerequisites:

	Development is strictly based on tox. To install it run:

python -m pip install tox

License

Copyright (c) 2014-2018, Adam Karpierz

Licensed under the BSD license

http://opensource.org/licenses/BSD-3-Clause

Please refer to the accompanying LICENSE file.

Authors

	Adam Karpierz <adam@karpierz.net>

Installation and testing

Install using pip

python -m pip install numpy # not mandatory but highly recommended
python -m pip install jtypes.javabridge

Install without pip

Make sure numpy is installed (not mandatory but highly recommended)
python setup.py install

Dependencies

The jtypes.javabridge requires Python 2.7 or above, NumPy (not mandatory but
highly recommended) and the Java Runtime Environment (JRE) (a C compiler is not
required).

Linux

On CentOS 6, the dependencies can be installed as follows:

yum install gcc numpy java-1.7.0-openjdk-devel
curl -O https://raw.github.com/pypa/pip/master/contrib/get-pip.py
python get-pip.py

On Fedora 19, the dependencies can be installed as follows:

yum install gcc numpy java-1.7.0-openjdk-devel python-pip openssl

On Ubuntu 13, 14 and Debian 7, the dependencies can be installed as follows:

apt-get install openjdk-7-jdk python-pip python-numpy

On Arch Linux, the dependencies can be installed as follows:

pacman -S jdk7-openjdk python2-pip python2-numpy base-devel

MacOS X

	Install the Xcode command-line tools. There are two ways:

	Install Xcode from the Mac App Store. (You can also download it
from Apple’s Mac Dev Center, but that may require membership in
the Apple Developer Program.) Install the Xcode command-line
tools by starting Xcode, going to Preferences, click on
“Downloads” in the toolbar, and click the “Install” button on
the line “Command Line Tools.” For MacOS 10.9 and Xcode 5 and
above, you may have to install the command-line tools by typing
xcode-select --install and following the prompts.

	Download the Xcode command-line tools from Apple’s Mac Dev
Center and install. This may require membership in the Apple
Developer Program.

	Create and activate a virtualenv virtual environment if you don’t
want to clutter up your system-wide python installation with new
packages.

	python -m pip install numpy # not mandatory but highly recommended

	python -m pip install jtypes.javabridge

Windows

If you do not have a C compiler installed, you can install Microsoft Visual
C++ Build Tools to perform the compile steps. The compiler installation
can be found in https://visualstudio.microsoft.com/visual-cpp-build-tools/.

You should install a Java Development Kit (JDK) appropriate for your
Java project. The Windows build is tested with the Oracle JDK 1.7. You
also need to install the Java Runtime Environment (JRE). Note that
the bitness needs to match your python: if you use a 32-bit Python,
then you need a 32-bit JRE; if you use a 64-bit Python, then you need
a 64-bit JRE.

The paths to PIP and Python should be in your PATH (set
PATH=%PATH%;c:\\Python27;c:\\Python27\\scripts if Python and PIP
installed to the default locations). The following steps should
perform the install:

	Run Command Prompt as administrator.
Set the path to Python and PIP if needed.

	Issue the command:

python -m pip install jtypes.javabridge

Running the unit tests

Running the unit tests requires Nose. Some of the tests require Python 2.7
or above.

	Build and install in the source code tree so that the unit tests can run:

python setup.py develop

	Run the unit tests:

python -m jt.javabridge.tests

You must build the extensions in-place on Windows, then run tests
if you use setup to run the tests:

python setup.py build_ext -i
python setup.py tests

See the section Unit testing for how to run unit tests for your
own projects that use jtypes.javabridge.

Hello world

Without a GUI:

import os
from jt import javabridge

javabridge.start_vm(run_headless=True)
try:
 print(javabridge.run_script('java.lang.String.format("Hello, %s!", greetee);',
 dict(greetee='world')))
finally:
 javabridge.kill_vm()

You can also use a with block:

import os
from jt import javabridge

with javabridge.vm(run_headless=True)
 print(javabridge.run_script('java.lang.String.format("Hello, %s!", greetee);',
 dict(greetee='world')))

With only a Java AWT GUI:

import os
import wx
from jt import javabridge

javabridge.start_vm()

class EmptyApp(wx.App):
 def OnInit(self):
 javabridge.activate_awt()
 return True

try:

 app = EmptyApp(False)

 # Must exist (perhaps the app needs to have a top-level window?), but
 # does not have to be shown.
 frame = wx.Frame(None)

 javabridge.execute_runnable_in_main_thread(javabridge.run_script("""
 new java.lang.Runnable() {
 run: function() {
 with(JavaImporter(java.awt.Frame)) Frame().setVisible(true);
 }
 };"""))

 app.MainLoop()

finally:

 javabridge.kill_vm()

Mixing wxPython and Java AWT GUIs:

import os
import wx
from jt import javabridge

class EmptyApp(wx.PySimpleApp):
 def OnInit(self):
 javabridge.activate_awt()

 return True

javabridge.start_vm()

try:
 app = EmptyApp(False)

 frame = wx.Frame(None)
 frame.Sizer = wx.BoxSizer(wx.HORIZONTAL)
 launch_button = wx.Button(frame, label="Launch AWT frame")
 frame.Sizer.Add(launch_button, 1, wx.ALIGN_CENTER_HORIZONTAL)

 def fn_launch_frame(event):
 javabridge.execute_runnable_in_main_thread(javabridge.run_script("""
 new java.lang.Runnable() {
 run: function() {
 with(JavaImporter(java.awt.Frame)) Frame().setVisible(true);
 }
 };"""))
 launch_button.Bind(wx.EVT_BUTTON, fn_launch_frame)

 frame.Layout()
 frame.Show()
 app.MainLoop()

finally:

 javabridge.kill_vm()

Starting and killing the JVM

API

	
jt.javabridge.JARS

	a list of strings; gives the full path to some JAR files that should be added
to the class path in order for all the features of the jtypes.javabridge
to work properly.

Environment

In order to use the jtypes.javabridge in a thread, you need to attach to the
JVM’s environment in that thread. In order for the garbage collector to be able
to collect thread-local variables, it is also necessary to detach from the
environment before the thread ends.

Without GUI (headless mode)

Using the JVM in headless mode is straighforward:

import os
from jt import javabridge

javabridge.start_vm(run_headless=True)
try:
 print(javabridge.run_script('java.lang.String.format("Hello, %s!", greetee);',
 dict(greetee='world')))
finally:
 javabridge.kill_vm()

With GUI on the Java side

Using the JVM with a graphical user interface is much more involved
because you have to run an event loop on the Python side. You also
have to make sure that everything executes in the proper thread; in
particular, all GUI operations have to run in the main thread on Mac
OS X. Here is an example, using a wxPython app to provide the event loop:

import os
import wx
from jt import javabridge

javabridge.start_vm()

class EmptyApp(wx.App):
 def OnInit(self):
 javabridge.activate_awt()
 return True

try:

 app = EmptyApp(False)

 # Must exist (perhaps the app needs to have a top-level window?), but
 # does not have to be shown.
 frame = wx.Frame(None)

 javabridge.execute_runnable_in_main_thread(javabridge.run_script("""
 new java.lang.Runnable() {
 run: function() {
 with(JavaImporter(java.awt.Frame)) Frame().setVisible(true);
 }
 };"""))

 app.MainLoop()

finally:

 javabridge.kill_vm()

With GUI on both the Java side and the Python side

Finally, an example combining AWT for GUI on the Java side with
wxPython for GUI on the Python side:

import os
import wx
from jt import javabridge

class EmptyApp(wx.PySimpleApp):
 def OnInit(self):
 javabridge.activate_awt()

 return True

javabridge.start_vm()

try:
 app = EmptyApp(False)

 frame = wx.Frame(None)
 frame.Sizer = wx.BoxSizer(wx.HORIZONTAL)
 launch_button = wx.Button(frame, label="Launch AWT frame")
 frame.Sizer.Add(launch_button, 1, wx.ALIGN_CENTER_HORIZONTAL)

 def fn_launch_frame(event):
 javabridge.execute_runnable_in_main_thread(javabridge.run_script("""
 new java.lang.Runnable() {
 run: function() {
 with(JavaImporter(java.awt.Frame)) Frame().setVisible(true);
 }
 };"""))
 launch_button.Bind(wx.EVT_BUTTON, fn_launch_frame)

 frame.Layout()
 frame.Show()
 app.MainLoop()

finally:

 javabridge.kill_vm()

Executing JavaScript on the JVM

As you will see in subsequent sections, navigating and manipulating
the JVM’s class and object structure can result in verbose and
cumbersome Python code. Therefore, jtypes.javabridge ships with
the JavaScript interpreter Rhino, which runs on the JVM.
In many cases, the most convienient way to interact with the JVM is
to execute a piece of JavaScript.

For more information on using Rhino with the JVM see
https://developer.mozilla.org/en-US/docs/Rhino/Scripting_Java

Examples:

>>> from jt import javabridge
>>> javabridge.run_script("2 + 2")
4

>>> javabridge.run_script("a + b", bindings_in={"a": 2, "b": 3})
5

>>> outputs = {"result": None}
>>> javabridge.run_script("var result = 2 + 2;", bindings_out=outputs)
>>> outputs["result"]
4

>>> javabridge.run_script("java.lang.Math.abs(v)", bindings_in=dict(v=-1.5))
1.5

A conversion is necessary when converting from Python primitives and objects
to Java and JavaScript primitives and objects. Python primitives are boxed into
Java objects - Javascript will automatically unbox them when calling a method
that takes primitive arguments (e.g. the call to Math.abs(double) as in the
above example. The following is a table of bidirectional translations from
Python to Java / Javascript and vice-versa:

	Python

	Java - boxed

	Java-primitive

	bool

	java.lang.Boolean

	boolean

	int

	java.lang.Integer

	int

	long

	java.lang.Long

	long

	float

	java.lang.Double

	double

	unicode

	java.lang.String

	N/A

	str (Python->java only)

	java.lang.String

	N/A

	None

	null

	N/A

High-level API

The high-level API can wrap a Java object or class so that its methods and
fields can be referenced by dot syntax. It also has functions that offload
some of the burden of exception handling and type conversion, thus providing
a mid-level compromise between ease of use and performance.

Signatures

jtypes.javabridge uses method signatures when it uses the JNI method lookup
APIs. The method signatures are also used to convert between Python and Java
primitives and objects. If you use the high-level API, as opposed to scripting,
you will need to learn how to construct a signature for a class method.
For example, java.lang.String has the following three methods:

public char charAt(int index)
public int indexOf(String str)
public byte [] getString(String charsetName)

charAt has the signature, “(I)C”, because it takes one integer argument (I) and
its return value is a char (C).

indexOf has the signature, “(Ljava/lang/String;)I”, “L” and “;” bracket a
class name which is represented as a path instead of with the dotted syntax.

getString has the signature, “(Ljava/lang/String;)[B. “[B” uses “[” to indicate
that an array will be returned and “B” indicates that the array is of type, byte.

The signature syntax is described in JNI Types and Data Structures [http://docs.oracle.com/javase/1.5.0/docs/guide/jni/spec/types.html].
An example: “(ILjava/lang/String;)[I” takes an integer and string as parameters
and returns an array of integers.

Cheat sheet:

	Z

	boolean

	B

	byte

	C

	char

	S

	short

	I

	int

	J

	long

	F

	float

	D

	double

	L

	class (e.g., Lmy/class;)

	[

	array of (e.g., [B = byte array)

The signatures are difficult, but you can cheat: the JDK has a
Java class file disassembler called javap that prints out the
signatures of everything in a class.

Wrapping Java objects using reflection

Operations on Java objects

Hand-coding Python objects that wrap Java objects

The functions make_new and make_method create Python methods that wrap
Java constructors and methods, respectively. The function can be used to create
Python wrapper classes for Java classes. Example:

>>> from jt import javabridge
>>> class Integer:
 new_fn = javabridge.make_new("java/lang/Integer", "(I)V")
 def __init__(self, i):
 self.new_fn(i)
 intValue = javabridge.make_method("intValue", "()I", "Retrieve the integer value")
>>> i = Integer(435)
>>> i.intValue()
435

Useful collection wrappers

The collection wrappers take a Java object that implements some interface
and return a corresponding Python object that wraps the interface’s methods
and in addition provide Python-style access to the Java object. The Java
object itself is, by convention, saved as self.o in the Python object.

Reflection

These functions make class wrappers suitable for introspection.
These wrappers are examples of the kinds of wrappers that you can build
yourself using make_method and make_new.

Executing in the correct thread

Ensure that callables, runnables and futures that use AWT run in
the AWT main thread, which is not accessible from Python for some operating
systems.

Exceptions

The low-level API

This API wraps the Java Native Interface (JNI) at the lowest level.
It provides primitives for creating an environment and making calls on it.

Java array objects are handled as numpy arrays.

Each thread has its own environment. When you start a thread, you must attach
to the VM to get that thread’s environment and access Java from that thread.
You must detach from the VM before the thread exits.

In order to get the environment:

	Examples::

	>>> from jt.javabridge import get_env
>>> env = get_env()
>>> s = env.new_string(u"Hello, world.")
>>> c = env.get_object_class(s)
>>> method_id = env.get_method_id(c, "length", "()I")
>>> method_id
<Java method with sig=()I at 0xa0a4fd0>
>>> result = env.call_method(s, method_id)
>>> result
13

Calling Python from Java

The jtypes.javabridge loads a Java class, org.cellprofiler.javabridge.CPython,
that can be used to execute Python code. The class can be used within Java code
called from the Python interpreter or it can be used within Java to run Python
embedded in Java.

	
class org.cellprofiler.javascript.CPython()

	The CPython class binds the Python interpreter to the JVM and provides
the ability to execute Python scripts.

	
org.cellprofiler.javascript.CPython.exec()

	
	Arguments

	
	script – The Python script to execute.

	locals – A map of the name of a Java object in the Python
execution context to the Java object itself. The objects
in the map have local scope. A null value can be used
if no locals need to be defined.

	globals – A map of the name of a Java object to the Java
object itself. The objects in the map have global scope.
If a null value is used, globals defaults to the
builtin globals.

exec() executes the script passed within the Python interpreter.
The interpreter adds the builtin globals to the globals passed in,
then executes the script. The same map may be used for both the
locals and the globals - this mode may seem more familiar to those
who regularly script in Python and expect the import statement
to have a global effect.

There is no eval method. You can retrieve values by passing
a container object such as an array or map as one of the locals and you
can set elements in the object with values to be returned.

Example:

class MyClass {
 static final CPython cpython = CPython();

 public List<String> whereIsWaldo(String root) {
 ArrayList<String> result = new ArrayList<String>();
 Hashtable locals = new Hashtable();
 locals.put("result", result);
 locals.put("root", root);
 StringBuilder script = new StringBuilder();
 script.append("import os\n");
 script.append("from jt import javabridge\n");
 script.append("root = javabridge.to_string(root)");
 script.append("result = javabridge.JWrapper(result)");
 script.append("for path, dirnames, filenames in os.walk(root):\n");
 script.append(" if 'waldo' in filenames:");
 script.append(" result.add(path)");
 cpython.exec(script.toString(), locals, null);
 return result;
 }

}

	
org.cellprofiler.javascript.CPython.execute()

	execute is a synonym for exec which is a Python keyword.
Use execute in place of exec to call Python from a
jtypes.javabridge CWrapper for CPython.

Maintaing references to Python values

You may want to maintain references to Python objects across script executions.
The following functions let a Java caller refer to a Python value (which can
be a base type or an object) via a token which may be exchanged for the value
at any time. The Java code is responsible for managing the reference’s lifetime.
Example:

from jt import javabridge

cpython = javabridge.JClassWrapper('org.cellprofiler.javabridge.CPython')()
d = javabridge.JClassWrapper('java.util.Hashtable')()
result = javabridge.JClassWrapper('java.util.ArrayList')()
d.put("result", result)
cpython.execute(
 'from jt import javabridge\n'
 'x = { "foo":"bar"}\n'
 'ref_id = javabridge.create_and_lock_jref(x)\n'
 'javabridge.JWrapper(result).add(ref_id)', d, d)
cpython.execute(
 'from jt import javabridge\n'
 'ref_id = javabridge.to_string(javabridge.JWrapper(result).get(0))\n'
 'assert javabridge.redeem_jref(ref_id)["foo"] == "bar"\n'
 'javabridge.unlock_jref(ref_id)', d, d)

Unit testing

Unit testing of code that uses the jtypes.javabridge requires special care
because the JVM can only be run once: after you kill it, it cannot be restarted.
Therefore, the JVM cannot be started and stopped in the regular setUp()
and tearDown() methods.

You should then be able to run the tests module:

python -m jt.javabridge.tests

On some installations, setuptools’s test command will also work:

python setup.py test

If you prefer, these options can also be given on the command line:

nosetests --with-javabridge=True --classpath=my-project/jars/foo.jar

or:

python setup.py nosetests --with-javabridge=True --classpath=my-project/jars/foo.jar

For jtypes.javabridge developers

Build from git repository

git clone git@github.com:CellProfiler/python-javabridge.git
cd python-javabridge
cython *.pyx
python setup.py build
python setup.py install

Make source distribution and publish

git tag -a -m 'A commit message' '1.0.0pr11'
git push --tags # Not necessary, but you'll want to do it at some point
git clean -fdx
python setup.py develop
python setup.py sdist upload
python setup.py build_sphinx
python setup.py upload_sphinx

Upload source distribution built by Jenkins

git tag -a -m 'A commit message' '1.0.4'
git push --tags # Not necessary, but you'll want to do it at some point
Kick off a new Jenkins build manually, wait for it, and download.
twine upload javabridge-1.0.4.tar.gz
python setup.py build_sphinx
python setup.py upload_sphinx

Changelog

1.0.18b3 (2018-11-08)

	Update of the required setuptools version.

	Minor setup and tests improvements.

1.0.18b1 (2018-10-01)

	Synchro with javabridge master branch (v.1.0.18+).

1.0.17b2 (2018-05-29)

	Synchro with javabridge master branch.

	Bug fixes and improvements in Java 9 support.

	Update of Mozilla Rhino.

	Update of the required setuptools version.

1.0.14b4 (2018-02-26)

	Improvement and simplification of setup and packaging.

1.0.14b3 (2018-01-29)

	Development moved to github.

	General improvements and update.

1.0.14b2 (2017-01-01)

	Second beta release.

	Version numbering in sync. with the original javabridge.

0.1.1a1 (2014-10-05)

	Initial version.

Index

 J
 | O

J

 	
 	jt.javabridge.JARS (built-in variable)

O

 	
 	org.cellprofiler.javascript.CPython() (class)

 	
 	org.cellprofiler.javascript.CPython.exec() (org.cellprofiler.javascript.CPython method)

 	org.cellprofiler.javascript.CPython.execute() (org.cellprofiler.javascript.CPython method)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 jtypes.javabridge: running and interacting with the JVM from Python

 		
 README

 		
 jtypes.javabridge

 		
 Overview

 		
 About javabridge:

 		
 Requirements

 		
 Installation

 		
 Development

 		
 License

 		
 Authors

 		
 Installation and testing

 		
 Install using pip

 		
 Install without pip

 		
 Dependencies

 		
 Linux

 		
 MacOS X

 		
 Windows

 		
 Running the unit tests

 		
 Hello world

 		
 Starting and killing the JVM

 		
 API

 		
 Environment

 		
 Without GUI (headless mode)

 		
 With GUI on the Java side

 		
 With GUI on both the Java side and the Python side

 		
 Executing JavaScript on the JVM

 		
 High-level API

 		
 Signatures

 		
 Wrapping Java objects using reflection

 		
 Operations on Java objects

 		
 Hand-coding Python objects that wrap Java objects

 		
 Useful collection wrappers

 		
 Reflection

 		
 Executing in the correct thread

 		
 Exceptions

 		
 The low-level API

 		
 Calling Python from Java

 		
 Maintaing references to Python values

 		
 Unit testing

 		
 For jtypes.javabridge developers

 		
 Build from git repository

 		
 Make source distribution and publish

 		
 Upload source distribution built by Jenkins

 		
 Changelog

 		
 1.0.18b3 (2018-11-08)

 		
 1.0.18b1 (2018-10-01)

 		
 1.0.17b2 (2018-05-29)

 		
 1.0.14b4 (2018-02-26)

 		
 1.0.14b3 (2018-01-29)

 		
 1.0.14b2 (2017-01-01)

 		
 0.1.1a1 (2014-10-05)

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

